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Abstract

We argue that the use of differentials in introductory calculus courses provides a
unifying theme which leads to a coherent view of calculus. Along the way, we will meet
several interpretations of differentials, some better than others.

1 Introduction

. many mathematicians think in terms of infinitesimal quantities: apparently,
however, real mathematicians would never allow themselves to write down such
thinking, at least not in front of the children. Bill McCallum [16]

Calculus is rightly viewed as one of the intellectual triumphs of modern civilization. Math-
ematicians are also justly proud of the work of Cauchy and his contemporaries in the early
19th century, who provided rigorous justification of the methods introduced by Newton and
Leibniz 150 years previously.

Leibniz introduced the language of differentials to describe the calculus of infinitesimals,
which were later ridiculed by Berkeley as “ghosts of departed quantities” [4]. Modern calculus
texts mention differentials only in passing, if at all. Nonetheless, it is worth remembering
that calculus was used successfully during those 150 years. In practice, many scientists and
engineers continue to this day to apply calculus by manipulating differentials, and for good
reason. It works. The differentials of Leibniz [15] — not the weak imitation found in modern
texts — capture the essence of calculus, and should form the core of introductory calculus
courses.



2 Practice

The preliminary terror ... can be abolished once for all by simply stating what is
the meaning — in common-sense terms — of the two principal symbols that are
used in calculating. These dreadful symbols are:
(1) d, which merely means “a little bit of 7. ...
(2) [ which is merely a long S, and may be called ... “the sum of”.
Silvanus P. Thompson [26]

2.1 Differentials

Differentials are commonly used informally when making substitutions in integrals. For
example, the power law in the form

d(u?) = 2udu (1)

together with the substitution v = u? leads to

2/6“2udu:/evdv:e”:e“2

Differentials are equally effective for differentiation.

How many times have you seen a student claim that the derivative of 22 + y? is 2x + 2y,
or even that the derivative of 72 is 2r? Using differentials naturally eliminates such er-
rors. Equation (1) above is nothing but the power rule in differential language, and leads
immediately to

d(2* +y*) =2z dr + 2y dy (2)

which could lead to implicit differentiation by “dividing” by dzx, or to related rates by “di-
viding” by dt. Manipulations such as these are typical of the way in which scientists and
engineers use calculus in practice, but are rarely taught in mathematics classes. And even for
the student who fails to recognize immediately that 72 is a constant, the use of differentials

leads to
d (7r2) = 2w dm

a completely correct, if perhaps misleading, assertion.

A striking feature of this usage of differentials is that it is not necessary to specify the
independent variable. In (2), one does not need to know whether y is a function of x or
vice versa, or whether both are functions of some other variable, such as time. Equation (1)
is not a statement about derivatives, at least not yet. Rather, it is a statement about the
relative rates of change of u? and u, regardless of what other quantities u may depend on.

For another example, consider the volume of a cylinder, given by V' = 7r?h. The product
rule in the form

d(uwv) = vdu + udv (3)

leads immediately to
dV = 2rrhdr + 7 dh (4)



without first having to decide which of V', r, and h are changing, or whether the problem
seeks the rate of change of one of these quantities with respect to radius, time, temperature,
or possibly something else. Equation (4) is equally valid for related rates problems (“divide”
by dt) or for constrained optimization (set dV = 0 and solve for 2* — or perhaps ).

It is important to realize, however, that the differential itself is never the answer to
any physical question. Rather, it is the key which unlocks several questions: “Dividing”
by dt tells you how quickly the volume is increasing — per second (say), with the correct
units readily apparent. Even if one regards (4) as nothing but a heuristic tool, it has
clear advantages as a problem-solving strategy. Why clutter this up with assertions such as
r = f(t)? Mathematicians may think that way, but few of our colleagues in other disciplines
do so, nor do most of our students.

Differentials were used in (4) to relate the changes in several quantities which were them-
selves related through an equation. We will refer to this use of differentials as differentials
of equations. We encourage our students to find the differential first, without attempting to
solve for one variable in terms of the others.

A quite different notion of differential is obtained by starting with a function f(z) and
writing

df = f'(x) da (5)

We will refer to such differentials as differentials of functions. Unlike differentials of equa-
tions, differentials of functions require a choice of independent variable(s) for their definition.
In this interpretation, equation (4) must be regarded differently in a related rates problem
(with independent variable ¢) than in an optimization problem (with independent variable r
or h). Equation (5) also makes clear that, when using differentials of functions, the derivative
is the fundamental concept, from which the notion of differentials is derived. Contrast the
notion of differentials of functions with the above discussion of differentials of equations, in
which differentials come first, and derivatives are obtained by “division”.

2.2 Example

We present here a more complex problem, solved using differentials, which we believe illus-
trates both the advantages and disadvantages of this approach.

Consider the problem of minimizing the length of a piecewise straight path connecting
two fixed points with a given line, as shown in Figure 1. For instance [17], the line could
represent a river along which a single pumping station is to be built to serve two towns. The
distances C', D, and S = a + b are specified; the goal is to determine a and/or b so that
¢ = p+ ¢ is minimized.

The standard solution to this problem involves expressing a, b, p, ¢, and hence ¢, in terms
of a single variable, typically a, then minimizing ¢ by computing % and setting it equal to
zero. This computation is straightforward, but involves the derivatives of square roots and
some messy algebra.



Figure 1: Minimizing the combined distance p + g between two fixed points and a line.

Consider instead the following solution, using differentials. First, write down what you
know:

a+b S
a4+ C* = p?
b2+ D2 — q2

ptq = (

where S, C, D are known constants. Next, take the differential of each equation:

da+db = 0
2ada = 2pdp
2bdb = 2qdgq

dp+dq = dl

We are trying to minimize ¢, so we set d¢ = 0 to obtain

b b
O=dl=dp+dg=Lda+>db= (9——)(1@
p q P q

so that
b2 _ q2 _ b2 + D2
a2 P2 a2+ 2
which (since lengths must be positive) quickly yields

b D

a C

so that
cs DS

““Cc+D b_C+D
and it is straightforward to verify that these values do in fact minimize ¢.
Is this solution easier than the traditional solution? Maybe. The individual steps, and
especially the necessary derivatives, are indeed easier, but there are more of them. Further-
more, there is no single obvious algorithm which tells the student what to do next. The
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differentiation step is straightforward, but solving the resulting system of equations is an
art form — and there are several different ways to set up the original equations in the first
place.

We regard this “looseness” in the process as a feature, not a bug; students do not learn
much from template problem solving. So long as the student writes down correct equations,
computes differentials correctly, and keeps substituting one equation into another, the correct
solution will eventually emerge.

More importantly, nowhere in the above solution did we specify the independent variable!
One could argue that we have implicitly expressed everything in terms of a, and in fact a
solution involving implicit differentiation would look quite similar. But an equally good case
could be made that we instead used b, which indicates to us that trying to identify the
independent variable is the wrong question to be asking.

We return to this discussion below.



dr = Az

Figure 2: The definition of differential found in many modern textbooks.

3 Linear Approximation

Although this may seem a paradoz, all exact science is dominated by the idea of
approximation. Bertrand Russell [23]

Modern calculus textbooks introduce differentials — if at all — in the context of linear
approximation, as shown in Figure 2. Supposing that y = f(x), the actual change Ay in y
when changing x by an amount Az can be approximated using the tangent line, so that

Ay~ f'(z) Az (6)
The right-hand side is often defined to be dy, in which case one would have
dy = f'(z) Aw (7)
Applying this definition the function x, one would also have
de = Ax (8)

and therefore (compare with (5))
dy = f'(z) dx

The point of this construction appears to be to distinguish the actual change Ay from the
approximate change “dy”. In this usage, differentials become just another (finite) variable,
which is sometimes emphasized by writing

F(x,dx) = f(z) + f'(z) dx (9)

for the linear approximation to f near x, although z is usually held fixed so that F' can be
regarded as a function of the single variable “dx”.



flz+ Azx) — f(z)

Figure 3: Linear approximation without using differential notation.

One objection to this approach is that it fails to distinguish between the function f and
the variable y, which only agree on the graph of the function. After all, the goal is to
approximate f, not y. One common variation of the presentation given above avoids this
particular difficulty by replacing dy by df (and Ay by Af). From this point of view, the
content of (6) is better expressed as

flz+Az) ~ f(z) + f(z) Az
which could be written in a form similar to (6) if desired by introducing the notation

Af =[x+ Azx) = f(z)

yielding
Af = f'(x) Ax

The linear approximation (9) could then be written quite naturally as
F(x,Az) = f(z) + f'(z) Az

with a new variable, such as h or €, used instead of Az if desired.

A bigger objection to this approach, however, is that we see no good reason to refer to
the approximate change as “df”, let alone “dy”. Nowhere in the argument just given is there
a need to use differential notation! Personally, we would use Ay to label the approximate
change, as shown in Figure 3, since the equation of the tangent line can be naturally expressed
as

Ay = f'(z) Az

However, it’s not even obvious that the approximate change needs a label at all. The use of
differential notation (“dy”) for this label effectively prevents differentials from being used for
any other purpose, and in particular prevents them from being used to describe infinitesimals.
(As argued below, that may indeed have been the reason differential notation was adopted
for linear approximation.)



Finally, we point out that the process of linear approximation possesses a fundamental
asymmetry between the dependent and independent variables. Nowhere is this more ap-
parent than in Figure 2, in which dx = Ax, but dy # Ay. It is a useful exercise to draw
the analog of Figure 2 for the inverse function x = f~!(y) (assuming it exists), which we
encourage the reader to attempt; the resulting notions of dx and dy differ from those in
Figure 2. In this sense linear approximation more closely resembles the use of differentials
of functions, rather than differentials of equations.



4 Theory

Calculus required continuity, and continuity was supposed to require the infinitely
little; but nobody could discover what the infinitely little might be.
Bertrand Russell [24]

Everything is vague to a degree you do not realize till you have tried to make it
precise. Bertrand Russell [22]

4.1 What are Differentials?

Our first response to this question is that it doesn’t matter. What matters is that ratios
of differentials correctly represent derivatives, which they do. We also feel obliged to point
out that teachers of introductory students are more likely to care about the answer to this
question than their students themselves do.

The usage of differentials survives in most modern calculus courses in the guise of sub-
stitutions in integrals, for which computations similar to (1) are commonly used. Why not
use them for differentiation as well, as illustrated in Section 2.17

Mathematicians have been uncomfortable with this response for hundreds of years. While
it is not our purpose here to present formal definitions, there are several reasonable definitions
of differentials, each of which can be made precise. Among those which we tell our beginning
students are that differentials are:

Arbitrarily small changes in given quantities;

e A shorthand notation for limits;

e Differential forms (see e.g. [10]);

e The infinitesimals of the hyperreal numbers (nonstandard analysis; see e.g. [14]);
All of the above.

Regardless of which point of view one chooses to adopt, making differentials the funda-
mental idea on which calculus is based has many advantages. As noted above, they play a
key role in substitutions in integral calculus, however much one may feel that this use of dif-
ferentials is merely heuristic. But the biggest advantages are in differential calculus, where,
as outlined in Section 2.1, the use of differentials turns the chain rule, implicit differentiation,
and related rates — notoriously difficult concepts for students to master — into something
easy rather than hard, organized around a single, coherent idea.

Such advantages are often rediscovered in the literature. For example, Dawson [6] notes
that solving related rates problems using implicit differentiation is both easier and less prone
to error than substitution, and wonders why constrained optimization problems tend to be
solved by substituting the constraint, rather than by what he calls “early differentiation”.
Using differentials as in the example in Section 2.2, or, as we like to put it, “zapping equations
with d”, has all of the benefits of early differentiation, and more — there is no need to specify
the independent variable prior to differentiating. Furthermore, the “zapped” equations are



always linear in the differentials (or, if one prefers, derivatives), and hence can always be
solved simultaneously (in well-posed problems).

We now teach every derivative rule in differential form, such as (1) and (3), written in
terms of neutral variables such as u and v, rather than the overused x. Numerous students
who first see this approach in our vector calculus classes have commented that they wish
they had learned single-variable calculus this way! Students do tend to grumble at first that
“it’s not in the book”, but by the time they master related rates they are usually converted.

4.2 History

Arithmetic starts with the integers and proceeds by successively enlarging the num-
ber system by rational and negative numbers, irrational numbers, etc... But the
next quite logical step after the reals, namely the introduction of infinitesimals,
has simply been omitted. I think, in coming centuries it will be considered a great
oddity wn the history of mathematics that the first exact theory of infinitesimals
was developed 300 years after the invention of the differential calculus.

Abraham Robinson [20]

The association of differentials with linear approximation appears to date from the 1940s.
(Many of the articles referred to in this section were reprinted in [2].) The earliest discussion
of this usage of which we are aware is due to Kac and Randolph [13], who define differentials
in terms of derivatives, as in (5), with dz being viewed as a new variable. However, they are
careful never to relate dr to Ax; both are arbitrary. Phipps [18] later attempts to make this
usage precise, defining differentials of functions via (7) and (8).

Meanwhile, Church [5] points out the asymmetry between independent and dependent
variables, as well as the related crucial role differentials play in integration. Ransom [19]
proposes treating equations as fundamental, thus treating all variables equally. An edito-
rial note was inserted at the end of the latter paper by C. B. Allendoerfer, who expresses
disagreement with Ransom and solicits further discussion.

Fort [11] emphasizes that the differential is a function of two variables, not only the
original independent variable z, but also the change h = Az in . This is equivalent to (9)
in slightly different notation.

In another editorial comment, Allendoerfer [1] summarizes these and other articles, point-
ing out that single-variable calculus is fundamentally different from multivariable calculus.
He argues in favor of interpreting differentials as a shorthand for a limit argument, claims “no
logical connection” between the use of differentials in derivatives and integrals, and assumes
that differentials of equations implicitly describe derivatives with respect to a parameter. He
concludes,

There is a discredited view that differentials are some sort of “infinitely small
quantities.” Of course, this is nonsense, but there is a germ of truth in it. For
differentials do mark the places in mathematical expressions which are held by
small, but finite, quantities while some type of limiting process is carried out
in which these small quantities tend to zero. To the writer, they have no other
consistent meaning.
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It thus appears that differential notation was appropriated for linear approximation only
within the last 60 years, and that one of the motivations for doing so was to “clarify” that
infinitesimals are meaningless. This claim was convincingly rebutted by Robinson [20] barely
10 years later, yet little effort has been made to restore the original role of differentials in
calculus.

For example, Sylvanus P. Thompson’s 100-year-old calculus text [26] — which has never
been out of print — uses differentials throughout, treating them as intuitive objects which
anyone can master. However, the most recent edition of this text [27] contains a lengthy
introduction by Martin Gardner, who effectively undoes this approach by providing modern
definitions of functions, limits, and derivatives, alleged prerequisites which the original author
clearly chose to do without.

There are, however, some recent attempts to acknowledge that there are viable alterna-
tives to the reinterpretation of differentials in terms of linear approximation. At least one
modern calculus text [17] adopts a middle course, being careful never to confuse dz with Az,
thus at least allowing readers to interpret the former as an infinitesimal if they so choose.
Our own interest in differentials is motivated by our successful use of the vector differential
d7r as the unifying concept in vector calculus [7, 9]. We also call the reader’s attention to
a delightful article [3], which provides an intuitively obvious geometric construction of the
hyperreal numbers.

Other disciplines are much more open to the (original) use of differentials. One standard
text in electrodynamics [12], a subject which makes heavy use of multivariable calculus,
summarizes two years of calculus courses in fewer than 50 pages — using differentials as a
matter of course.

4.3 Differentials in higher dimensions

Any discussion of the merits of using differentials in calculus should acknowledge that there
are some subtleties when using differentials in more than one dimension. For instance, it is
natural to write

dA =dxdy = rdrde (10)

for the area element in rectangular and polar coordinates, respectively. (For an explanation
of why we use ¢ rather than 6, see [8].) However, the second equality requires justification,
and only obviously makes sense in the language of differential forms. It is simply not true
that dx dy is approximately the same as r dr d¢ for infinitesimal regions, but that is not the
point. In order to integrate in higher dimensions, one must first decide how to “chop up”
the region. Only then do you know what dA is! At best, the second equality in (10) can be
thought of as a convenient shorthand for an equality involving integrals, not just integrands.

We emphasize, however, that there is no problem interpreting differentials as infinitesi-
mals once the decision is made how to integrate; the only problem is in comparing two such
choices. And even then, the bottom line is that “equalities” such as (10) always lead to
correct answers.
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5 Conclusion

But so great is the average person’s fear of the infinite that to this day calculus
all over the world is being taught as a study of limit processes instead of what it
really is: infinitesimal analysis. Rudy Rucker [21]

We have made two distinct points. First of all, there is a significant difference between
differentials of functions and differentials of equations. The student who is able to solve
the example in Section 2.2 using differentials has demonstrated a mastery of both calculus
and problem-solving skills in a way that a student using traditional methods has not. Fur-
thermore, these same skills can be adapted to virtually any problem in differential calculus,
providing a coherence to the subject that may not be obvious to the student in the traditional
approach.

Second, there is no need for — and little advantage to — the use of differential notation to
describe linear approximation, a usage which is in any case fairly recent. However, their use
for this purpose does make it difficult for others to later interpret differentials as infinitesimals
— especially for those who favor differentials of equations over differentials of functions. By
avoiding the language of differentials when discussing linear approximation, the door would
be left open for those who so choose to use differentials to do calculus, with all of the
advantages described in Section 2.1.

Science is about physical quantities, not functions. Mathematicians justifiably pride
themselves on the development of a rigorous calculus of functions, but it is rather the calculus
of physical quantities which is relevant to scientists. Whether one regards differentials as
the conceptual core of calculus, as we do, or merely a heuristic tool, they reflect the way
many of our professional colleagues think about calculus. This invaluable tool should be
emphasized, not relegated to a recently-invented role in linear approximation, for which it
is neither suited nor needed.

Surely we should encourage the teaching of a concept which captures the intuitive essence
of calculus, which is easy for students to master, and which always produces correct answers.
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